

itty3 Contents

	Tutorial
	Installation

	Starting An App

	Adding Your First View

	Building A TODO List App
	The Index View

	Creating New TODOs View

	Aside: Auto-Reloading Server

	Marking TODOs As Done

	Congratulations!

	Extending itty3
	Custom HttpResponse

	Custom HttpRequest

	Different Routing

	Deploying itty3
	Deployment Checklist

	Managing App.debug

	Use A Proper WSGI Server

	Troubleshooting
	“My server isn’t responding to traffic!”

	“I’m getting a 500 error and don’t know what’s wrong!”

	“The traceback of my error isn’t enough!”

	API Documentation
	itty3

	Philosophy
	What itty3 Is

	What itty3 Isn’t

	The Future

	Contributing
	Ways To Contribute

	File An Issue/Bug Report

	Add/Update Documentation

	Add Test Coverage

	Add Feature Code

Tutorial

This guide is aimed at getting started with itty3. You should be at least
basically familiar with Python & HTTP in order to get the most out of this
tutorial.

Installation

For most users in a modern Python environment they can control, you’ll want
to run:

$ pip install itty3

Ideally, this should be run within a virtualenv/pipenv/similar to
give you some isolation. Installing Python libraries globally is a recipe
for pain & there are many good options out there that are easy/quick to learn
to help you avoid dependency hell.

That said, itty3 is small/minimal by design. The code (minus docstrings
& comments) is less than 1k lines of code. This allows you to embed itty3
directly into your application by copying in itty3.py (or even within
your app file directly!).

Regardless, itty3’s only dependency is Python 3. It’s been tested on
Python 3.7.4+, but may work on older versions.

Finally, you can find the complete source for this tutorial within
the examples/tutorial_todolist directory of itty3’s source code.

Starting An App

Once you have installed itty3, the next thing you’ll want to do is start
an application file. A good choice for starting out is to create an
empty app.py file.

You’ll start out by importing itty3:

import itty3

Next, define a module-wide App object instance:

app = itty3.App()

This will allow you start registering “routes”, a combination of an HTTP
method, a URI path & a view (a callable function that takes a request &
produces a response).

After that, provide a way for the built-in server code to run your new
app. At the bottom of the file, add the following:

if __name__ == "__main__":
 app.run()

This tells the Python interpreter that, if the file itself is being run by
Python, to execute the code within the if block. The app.run()
runs the built-in development server & starts listening for requests.

Your complete app.py file should now look like:

import itty3

app = itty3.App()

if __name__ == "__main__":
 app.run()

Now run the server using python app.py. You should get a message about
the server starting & where it’ll handle requests at:

itty3 <version>: Now serving requests at http://127.0.0.1:8000...

You can now go to the browser & hit http://127.0.0.1:8000/ to access the app!

However, because we haven’t written any application-specific code, you’re
going to get a 404 Not Found page, which isn’t super-useful. Let’s fix
that…

Adding Your First View

A “view” function is any callable that can accept a request object &
produce a response object for serving back to the user. We don’t
need to focus on the details of those for now (more later), so let’s just
write a basic index view:

import itty3

app = itty3.App()

NEW CODE HERE!
@app.get("/")
def index(request):
 body = "Hello, world!"
 return app.render(request, body)

if __name__ == "__main__":
 app.run()

The first line (@app.get("/")) is a decorator. That automatically
registers your index view with the app, telling it that the attached
view can handle an HTTP GET request at the path /.

The next line (def index(request):) declares the callable that is
run when that request is seen. In simple itty3 applications, that’s
usually just a plain Python function, but any callable (instance methods,
entire classes, etc.) will work. The only guideline is that it should accept
a request parameter (a itty3.HttpRequest object) as the first
positional argument.

We then build a simple string body, just to see a customized result out on
the page.

The final piece is the return app.render(request, body) line. This builds
and returns a HttpResponse object, which handles all the details of
serving a proper HTTP response back to the user, including status codes &
headers. app.render(...) is simply a convenience function for producing
that object.

If you Ctrl+C the python app.py & restart it, then hit
http://127.0.0.1:8000/ in your browser, you should now get a simple page
that says Hello, world!.

Hurray! Our first real web response works!

Note

You’ll note that “render”-ing in the context of itty3 doesn’t
do any templating. itty3 doesn’t care how you produce response
bodies, as long as a string or iterable can be returned.

This opens a world of options, from reading/returning entire files
(good for Single-Page Apps), returning serialized data (like JSON, YAML
or XML), or using your own choice of template language (like Jinja2,
Mako or even regular Python format strings).

The downside is that you need to do a bit more work & make a choice
around what you want to do. Evaluate your options & choose the one that
works for you.

Building A TODO List App

Let’s step beyond this & start crafting a real interactive app.
We’ll build a very basic TODO list application.

Note

We’re going to use a file-based & JSON setup. This is for
simplicity in the example code & to avoid further dependencies.

This is suitable for this toy app, but isn’t recommended for production
unless you know what you’re doing. GET YOU AN DATABASE!

We’ll leave the beginning code (import itty3 & app = itty3.App()) as
well as the ending code (everything after if __name__ == "__main__":)
alone, focusing only on our application code.

We’ll make the index view more useful first.

The Index View

First, let’s create a prettier index page. Alongside your app.py file,
let’s create an index.html file.

Add the following to that new index.html file:

<html>
 <head>
 <title>My TODO List</title>
 <style>
 /* Just a quick reset & some basic styles. */
 * { margin: 0; padding: 0; }
 html { background-color: #CCCCCC; text-align: center; }
 body { background-color: #FFFFFF; border-left: 2px solid #999999; border-right: 2px solid #999999; font-family: Helvetica, Arial, sans-serif; font-size: 14px; margin: 0 auto; text-align: left; width: 60%; padding: 40px 20px; }
 h1, h2, h3 { margin: 10px 0px; font-family: Georgia, 'Times New Roman', Times, serif; }
 p { display: block; padding: 10px 0px; }
 ul { display: block; padding: 10px 0px; list-style: none; }
 ul li { border: 1px solid #EEEEEE; padding: 5px; }
 ul li form { display: inline; }
 ul li input { margin: 0px 10px 0px 0px; }
 </style>
 </head>

 <body>
 <header>
 <h1>My TODO List</h1>
 </header>

 <content>

 <!--
 We'll manually search/replace this out with string formatting.
 This is where a real template language would come in handy.
 -->
 {{ content }}

 <p>
 <form method="post" action="/create/">
 <label for="id_todo">Add TODO:</label>
 <input type="text" id="id_todo" name="todo">
 <input type="submit" value="Create">
 </form>
 </p>
 </content>
 </body>
</html>

Save the file & close it.

Next, alongside the app.py & index.html files, create a
data.json file:

{
 "items": []
}

Save the file & close it.

Now go back to app.py & let’s update the index view to use our
new files:

At the top of the file, add:
import json

...

Then update the ``index`` view.
@app.get("/")
def index(request):
 # We'll open/read the HTML file.
 with open("index.html") as index_file:
 template = index_file.read()

 # Pull in the JSON data (currently mostly-empty).
 with open("data.json") as data_file:
 data = json.load(data_file)

 content = ""

 # Create the list of TODO items.
 for offset, item in enumerate(data.get("items", [])):
 # Note: This is gross & dangerous! You need to escape your
 # data in a real app to prevent XSS attacks!
 content += "{}".format(item)

 if not content:
 content = "Nothing to do!"

 # Now "template" in the data.
 template = template.replace("{{ content }}", content)

 # Return the response.
 return app.render(request, template)

Restart the server & check http://127.0.0.1:8000/ in your browser. You
should now have some HTML & an empty TODO list!

You can verify things are working by manually changing your data.json
to:

{
 "items": [
 "Finish TODO list app",
 "Do some gardening",
 "Take a nap"
]
}

Then reloading the page (no server restart needed).

Creating New TODOs View

Now that we can see our TODO list, let’s add a way to create new TODO.
We’ll be creating a second function:

@app.post("/create/")
def create_todo(request):
 # Pull in the JSON data (currently mostly-empty).
 with open("data.json") as data_file:
 data = json.load(data_file)

 # Retrieve the new TODO text from the POST'ed data.
 new_todo = request.POST.get("todo", "---").strip()

 # Append it onto the TODO items.
 data["items"].append(new_todo)

 # Write the data back out.
 with open("data.json", "w") as data_file:
 json.dump(data, data_file, indent=4)

 # Finally, redirect back to the main list.
 return app.redirect(request, "/")

We’re doing a couple new things here. First, we’re using @app.post(...),
which hooks up a route for an HTTP POST request.

Second, we’re making use of request.POST. This is a QueryDict,
a dict-like object that contains all the POST’ed form values.

Note

If you’re handling JSON or another different request body, you
should NOT use request.POST. Instead, use request.body &
manually decode the contents of that string.

Finally, we’re using app.redirect(...), which is a convenience function
for sending an HTTP (temporary) redirect back to the main page. This
triggers a fresh load of the TODO list, including the newly added TODO.

Restart your python app.py, reload in your browser & try creating a new
TODO item.

Aside: Auto-Reloading Server

By now, you may be tired of manually restarting your app.py server.
To make things a little easier, we’ll set up Gunicorn [https://gunicorn.org/] to serve our
local traffic.

First, install gunicorn:

$ pip install gunicorn

Next, instead of running python app.py, we’ll run:

$ gunicorn -w 1 -t 0 --reload app:app

Now, whenever we change our app.py file, gunicorn will automatically
reload the code. Now it’ll always be serving the current code to our browser.

No more restarts!

Marking TODOs As Done

The last bit of our TODO list app is being able to mark a TODO as completed.

First, we’ll need to modify our index view. Find the line:

content += "{}".format(item)

…and change it to:

content += '<form method="post" action="/done/{offset}/"><input type="submit" value="Complete"></form>{item}'.format(
 offset=offset,
 item=item
)

We unfortunately need to use POST here, as HTML forms can’t submit
DELETE requests.

Note

Yes, there are better ways to handle this form submission.
Adding some modern JS would be a good exercise for the reader. :)

Finally, we need to add a new view:

@app.post("/done/<int:offset>/")
def mark_done(request, offset):
 # Pull in the JSON data (currently mostly-empty).
 with open("data.json") as data_file:
 data = json.load(data_file)

 items = data.get("items", [])

 if offset < 0 or offset >= len(items):
 return app.error_404(request, "Not Found")

 # Move it to "done".
 data.setdefault("done", [])
 data["done"].append(items[offset])

 # Slice out the offset.
 plus_one = offset + 1
 data["items"] = items[:offset] + items[plus_one:]

 # Write the data back out.
 with open("data.json", "w") as data_file:
 json.dump(data, data_file, indent=4)

 # Finally, redirect back to the main list.
 return app.redirect(request, "/")

This is very similar to the create_todo view, with just a couple
modifications.

First, note that our path is /done/<int:offset>/ & we’ve added a
offset parameter to the view’s function declaration. This lets us
capture data out of the URL & use it in our app.

Next, we use that offset to check to ensure it’s within the bounds
of the items. If not, we call app.error_404(...) to supply a
404 Not Found response.

We then archive the item to a (potentially new) "done" key within our
JSON. And then we overwrite the items with a slice that excludes the
desired offset.

Reload in the browser & give it a spin!

Congratulations!

With this, you’ve built your first working application with itty3.

For more information, you can:

	Refer to the API docs at API Documentation

	Read some example code [https://github.com/toastdriven/itty3/tree/master/examples]

	Check out the Deploying itty3 guide

	Find out how to Extending itty3

	Learn how to Troubleshooting

Happy developing!

Extending itty3

itty3 is designed to be streamlined & simple to use out of the box.
However, it’s relatively easy to customize as well.

Custom HttpResponse

In normal usage, app.render(...) is simply a shortcut/convenience
method for constructing an itty3.HttpResponse object. There’s
nothing extraordinary about these instances, so you can make them yourself
if you prefer:

import pyyaml

@app.get("/whatev/")
def whatev(request):
 data = {
 "greeting": "Hello",
 "noun": "world",
 "punctuation": "!",
 }
 return itty3.HttpResponse(
 body=pyyaml.dump(data)
 content_type="text/yaml"
)

Or even subclass it to “bake in” complex behavior:

class YAMLResponse(itty3.HttpResponse):
 def __init__(self, data, **kwargs):
 body = pyyaml.dump(data)
 kwargs["content_type"] = "text/yaml"
 super().__init__(body, **kwargs)

@app.get("/whatev/")
def whatev(request):
 data = {
 "greeting": "Hello",
 "noun": "world",
 "punctuation": "!",
 }
 return YAMLResponse(data)

And you can override/extend App.render if you want to automatically
use your new subclass:

class MyApp(itty3.App):
 def render(self, request, *args, **kwargs):
 # Because of the mismatch in signatures (`body` vs `data`), this
 # may not work perfectly in all situations.
 return YAMLResponse(*args, **kwargs)

Custom HttpRequest

As with HttpResponse, itty3.HttpRequest isn’t particularly
special. The only interesting/tricky part is automatically constructed by
App.create_request, so you’ll need to override that method when creating
a subclass.

For instance, if you wanted to identify a request was secure in a different
way (e.g. verifying a nonce was present in headers):

class NonceHttpRequest(itty3.HttpRequest):
 def is_secure(self):
 if "X-Secure-Nonce" not in self.headers:
 return False

 nonce = self.headers["X-Secure-Nonce"]
 # Check a DB for that nonce within a time range.

 if not verified:
 return False

 # The request is good. Carry on.
 return True

You could then tell your App to always use this subclass with:

class SuperSecureApp(itty3.App):
 def create_request(self, environ):
 return NonceHttpRequest.from_wsgi(environ)

Different Routing

If itty3’s routing doesn’t suit you, you can even define your own
variant of Route. As long as it conforms to a bit of expected API
& with a couple minor tweaks to App…:

We want to support routes like:
#
"/app/:id/:title"
#
...and attempt automatic conversion of types.
This is a naive implementation of that.

class SimpleRoute(object):
 def __init__(self, method, path, func):
 self.method = method
 self.path = path
 self.func = func

 def split_uri(self, path):
 return path.split("/")

 def can_handle(self, method, path):
 if not self.method == method:
 return False

 internal_path_bits = self.split_uri(self.path)
 external_path_bits = self.split_uri(path)

 if len(internal_path_bits) != len(external_path_bits):
 # Without even iterating, we know it's not right.
 return False

 matched = True

 for offset, bit in enumerate(internal_path_bits):
 if not bit.startswith(":"):
 # We're looking for a non-variable, exact match.
 if bit != external_path_bits[offset]:
 matched = False
 break
 else:
 # It's a variable. Carry on.
 continue

 return matched

 def extract_kwargs(self, path):
 # This only gets called if the route can handle the URI.
 # So we'll take a shortcut or two here for brevity.
 internal_path_bits = self.split_uri(self.path)
 external_path_bits = self.split_uri(path)

 matches = {}

 for offset, bit in enumerate(internal_path_bits):
 if not bit.startswith(":"):
 # It's not a variable, we don't care.
 continue

 # It's a variable. Slice off the colon.
 var_name = bit[1:]

 # Extract it from the actual URI.
 value = external_path_bits[offset]

 # Try to convert the type.
 try:
 value = int(value)
 except ValueError:
 pass

 try:
 value = float(value)
 except ValueError:
 pass

 if value in ("true", "false"):
 # Store it as a boolean.
 value = value == "true"

 # Finally, track what we found.
 matches[var_name] = value

 return matches

Now, just override ``App`` to use your new routes.
class SimpleRoutesApp(itty3.App):
 def add_route(self, method, path, func):
 # We swap in the custom class here.
 route = SimpleRoute(method, path, func)
 self._routes.append(route)

Deploying itty3

Deployment Checklist

	Ensure App.debug is set to False

	Use a proper WSGI server

	Check your 404 & 500 pages to ensure no data is leaking

	Set up static asset serving

Managing App.debug

A solid way to manage the App.debug option is to rely on
environment-based configuration.:

import os

import itty3

Rely on environment variables to set `debug`.
app = itty3.App(
 debug=bool(os.environ.get("APP_DEBUG", False))
)

This allows your code to automatically deploy to new environments (such as
production) with debug=False. For local development, you can export
the environment variable to turn debug back on.:

$ export APP_DEBUG=1
$ python app.py

Use A Proper WSGI Server

While the built-in wsgiref server is convenient, it’s not particularly
feature-rich or configurable. Some good production-ready alternatives
include:

	Gunicorn [https://gunicorn.org/]

	Bjoern [https://github.com/jonashaag/bjoern]

	uWSGI [https://uwsgi-docs.readthedocs.io/en/latest/]

	CherryPy [https://cherrypy.org/]

	gevent [http://www.gevent.org/]

	Twisted [https://twistedmatrix.com/trac/]

All are good options, boasting good speed/compliance/configuration across
the board. You can’t really go wrong, so experiment & find the one you like
best.

The author has the most experience with Gunicorn [https://gunicorn.org/], so example configuration
to accommodate that follows:

gunicorn.conf
import multiprocessing

bind = "127.0.0.1:8000"
workers = multiprocessing.cpu_count() * 2 + 1
daemon = True
reload = False
max_requests = 1000
user = "<a-configured-non-root-user>"
group = "<an-optional-group>"

Then running the daemon with:

$ gunicorn -c gunicorn.conf myapp:app

It’s important to note that this runs gunicorn still only on the
localhost. It’s generally advised to put a reverse proxy or similar in
front of your WSGI workers.

As an example, here’s an nginx [http://nginx.org/] setup for proxying to Gunicorn [https://gunicorn.org/]:

server {
 listen 80;
 server_name example.org;
 access_log /var/log/nginx/access.log;

 location / {
 proxy_pass http://127.0.0.1:8000;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
}

Troubleshooting

“My server isn’t responding to traffic!”

This is commonly because of the host address itty3 is bound to. By
default, the code & docs default to 127.0.0.1 (“localhost”). This
prevents your application server from responding to requests from the
outside world.

You’ll likely need to change the address to something like 0.0.0.0
(“respond to requests from any host”) or have a server that sits in front
of your application server (like Nginx or similar).

A way to check if the application server is responding is to be on the server
& issue a curl command to http://127.0.0.1:<port-goes-here>/. If
it responds as expected, it’s likely an address (or port) issue.

“I’m getting a 500 error and don’t know what’s wrong!”

When App.debug=False (the default), itty3 suppresses exceptions &
simply returns a static 500 error page.

You’ll want to set App.debug to True, either via:

	the initialization - itty3.App(debug=True)

	setting the attribute on the App itself - app.debug = True

	the app.run(debug=True) if you’re using that

When you do this, a traceback will be provided in the console output for
the server. You can use this to debug your issue.

“The traceback of my error isn’t enough!”

Other frameworks provide more comprehensive or even interactive debug
pages. While nice, these come at a complexity & security cost.

Being minimalist, the next best way to figure out what’s wrong in your
itty3 application is through the use of an interactive debugger, such
as pdb [https://docs.python.org/3/library/pdb.html].

You can drop a import pdb; pdb.set_trace() pretty much anywhere in your
code, step through instructions & examine variable contents.

There are other options, such as wdb, pudb or even in-editor
interactive debuggers! Experiment & find one you like.

Experience with an interactive debugger is an invaluable skillset to have
& well worth the time you invest into it.

API Documentation

itty3

The itty-bitty Python web framework… Now Rewritten For Python 3!

	
class itty3.App(debug=False)

	Bases: object

An orchestration object that handles routing & request processing.

	Parameters

	debug (bool) – Allows for controlling a debugging mode.

	
add_route(method, path, func)

	Adds a given HTTP method, URI path & view to the routing.

	Parameters

	
	method (str) – The HTTP method to handle

	path (str) – The URI path to handle

	func (callable) – The view function to process a matching request

	
create_request(environ)

	Given a WSGI environment, creates a HttpRequest object.

	Parameters

	environ (dict-alike) – The environment data coming from the WSGI
server, including request information.

	Returns

	A built request object

	Return type

	HttpRequest

	
delete(path)

	A convenience decorator for adding a view that processes a DELETE
request to routing.

Example:

app = itty3.App()

@app.delete("/blog/<slug:post_slug>/")
def delete_post(request, post_slug):
 ...

	Parameters

	path (str) – The URI path to handle

	
error_404(request)

	Generates a 404 page for when something isn’t found.

Exposed to allow for custom 404 pages. Care should be taken when
overriding this function, as it is used internally by the routing
& Python errors bubbling from within can break the server.

	Parameters

	request (HttpRequest) – The request being handled

	Returns

	The populated response object

	Return type

	HttpResponse

	
error_500(request)

	Generates a 500 page for when something is broken.

Exposed to allow for custom 500 pages. Care should be taken when
overriding this function, as it is used internally by the routing
& Python errors bubbling from within can break the server.

	Parameters

	request (HttpRequest) – The request being handled

	Returns

	The populated response object

	Return type

	HttpResponse

	
find_route(method, path)

	Determines the routing offset for a given HTTP method & URI path.

	Parameters

	
	method (str) – The HTTP method to handle

	path (str) – The URI path to handle

	Returns

	The offset of the matching route

	Return type

	int

	Raises

	RouteNotFound – If a matching route is not found

	
get(path)

	A convenience decorator for adding a view that processes a GET
request to routing.

Example:

app = itty3.App()

@app.get("/blog/<slug:post_slug>/")
def post_detail(request, post_slug):
 ...

	Parameters

	path (str) – The URI path to handle

	
get_log()

	Returns a logging.Logger instance.

By default, we return the itty3 module-level logger. Users are
free to override this to meet their needs.

	Returns

	The module-level logger

	Return type

	logging.Logger

	
patch(path)

	A convenience decorator for adding a view that processes a PATCH
(partial update) request to routing.

Example:

app = itty3.App()

@app.patch("/blog/bulk/")
def bulk_post(request):
 ...

	Parameters

	path (str) – The URI path to handle

	
post(path)

	A convenience decorator for adding a view that processes a POST
request to routing.

Example:

app = itty3.App()

@app.post("/blog/create/")
def create_post(request):
 ...

	Parameters

	path (str) – The URI path to handle

	
process_request(environ, start_response)

	Processes a specific WSGI request.

This kicks off routing & attempts to find a route matching the
requested HTTP method & URI path.

If found, the view associated with the route is called, optionally
with the parameters from the URI. The resulting HttpResponse
then performs the actions to write the response to the server.

If not found, App.error_404 is called to produce a 404 page.

If an unhandled exception occurs, App.error_500 is called to
produce a 500 page.

	Parameters

	
	environ (dict-alike) – The environment data coming from the WSGI
server, including request information.

	start_response (callable) – The function/callable to execute when
beginning a response.

	Returns

	The body iterable for the WSGI server

	Return type

	iterable

	
put(path)

	A convenience decorator for adding a view that processes a PUT
request to routing.

Example:

app = itty3.App()

@app.put("/blog/<slug:post_slug>/")
def update_post(request, post_slug):
 ...

	Parameters

	path (str) – The URI path to handle

	
redirect(request, url, permanent=False)

	A convenience function for supplying a HTTP redirect.

	Parameters

	
	request (HttpRequest) – The request being handled

	url (str) – A path or full URL to redirect the user to

	permanent (bool, Optional) – Whether the redirect should be
considered permanent or not. Defaults to False (temporary
redirect).

	Returns

	The populated response object

	Return type

	HttpResponse

	
remove_route(method, path)

	Removes a route from the routing.

	Parameters

	
	method (str) – The HTTP method to handle

	path (str) – The URI path to handle

	
render(request, body, status_code=200, content_type='text/html', headers=None)

	A convenience method for creating a HttpResponse object.

	Parameters

	
	request (HttpRequest) – The request being handled

	body (str) – The body of the response

	status_code (int, Optional) – The HTTP status to return. Defaults
to 200.

	content_type (str, Optional) – The Content-Type header to return
with the response. Defaults to text/html.

	headers (dict, Optional) – The HTTP headers to include on the
response. Defaults to empty headers.

	Returns

	The populated response object

	Return type

	HttpResponse

	
render_json(request, data, status_code=200, content_type='application/json', headers=None)

	A convenience method for creating a JSON HttpResponse object.

	Parameters

	
	request (HttpRequest) – The request being handled

	data (dict/list) – The Python data structure to be encoded as JSON

	status_code (int, Optional) – The HTTP status to return. Defaults
to 200.

	content_type (str, Optional) – The Content-Type header to return
with the response. Defaults to text/html.

	headers (dict, Optional) – The HTTP headers to include on the
response. Defaults to empty headers.

	Returns

	The populated response object

	Return type

	HttpResponse

	
render_static(request, asset_path)

	Handles serving static assets.

WARNING: This should really only be used in development!

It’s slow (compared to nginx, Apache or whatever), it hasn’t gone
through any security assessments (which means potential security
holes), it’s imperfect w/ regard to mimetypes.

	Parameters

	
	request (HttpRequest) – The request being handled

	asset_path (str) – A path of the asset to be served

	Returns

	The populated response object

	Return type

	HttpResponse

	
reset_logging(level=20)

	A method for controlling how App.run does logging.

Disables wsgiref’s default “logging” to stderr & replaces it
with itty3-specific logging.

	Parameters

	level (int, Optional) – The logging.LEVEL you’d like to have
output. Default is logging.INFO.

	Returns

	
	The handler class to be used.

	Defaults to a custom NoStdErrHandler class.

	Return type

	wsgiref.WSGIRequestHandler

	
run(addr='127.0.0.1', port=8000, debug=None, static_url_path=None, static_root=None)

	An included development/debugging server for running the App
itself.

Runs indefinitely. Use Ctrl+C or a similar process killing method
to exit the server.

	Parameters

	
	addr (str, Optional) – The address to bind to. Defaults to
127.0.0.1.

	port (int, Optional) – The port to bind to. Defaults to 8000.

	debug (bool, Optional) – Whether the server should be run in a
debugging mode. If provided, this overrides the App.debug
set during initialization.

	static_url_path (str, Optional) – The desired URL prefix for
static assets. e.g. /static/. Defaults to None (no static
serving).

	static_root (str, Optional) – The filesystem path to the static
assets. e.g. ../static_assets. Can be either a relative or
absolute path. Defaults to None (no static serving).

	
class itty3.HttpRequest(uri, method, headers=None, body='', scheme='http', host='', port=80, content_length=0, request_protocol='HTTP/1.0', cookies=None)

	Bases: object

A request object, representing all the portions of the HTTP request.

	Parameters

	
	uri (str) – The URI being requested.

	method (str) – The HTTP method (“GET|POST|PUT|DELETE|PATCH|HEAD”)

	headers (dict, Optional) – The received HTTP headers

	body (str, Optional) – The body of the HTTP request

	scheme (str, Optional) – The HTTP scheme (“http|https”)

	host (str, Optional) – The hostname of the request

	port (int, Optional) – The port of the request

	content_length (int, Optional) – The length of the body of the request

	request_protocol (str, Optional) – The protocol of the request

	cookies (http.cookies.SimpleCookie, Optional) – The cookies sent as
part of the request.

	
GET

	Returns a QueryDict of the GET parameters.

	
POST

	Returns a QueryDict of the POST parameters from the request body.

Useless if the body isn’t form-encoded data, like JSON bodies.

	
PUT

	Returns a QueryDict of the PUT parameters from the request body.

Useless if the body isn’t form-encoded data, like JSON bodies.

	
content_type()

	Returns the received Content-Type header.

	Returns

	The content-type header or “text/html” if it was absent.

	Return type

	str

	
classmethod from_wsgi(environ)

	Builds a new HttpRequest from the provided WSGI environ.

	Parameters

	environ (dict) – The bag of YOLO that is the WSGI environment

	Returns

	
	A fleshed out request object, based on what was

	present.

	Return type

	HttpRequest

	
get_status_line()

	

	
is_ajax()

	Identifies if the request came from an AJAX call.

	Returns

	True if sent via AJAX, False otherwise

	Return type

	bool

	
is_secure()

	Identifies whether or not the request was secure.

	Returns

	True if the environment specified HTTPs, False otherwise

	Return type

	bool

	
json()

	Decodes a JSON body if present.

	Returns

	The data

	Return type

	dict

	
split_uri(full_uri)

	Breaks a URI down into components.

	Parameters

	full_uri (str) – The URI to parse

	Returns

	
	A dictionary of the components. Includes path, query

	fragment, as well as netloc if host/port information is
present.

	Return type

	dict

	
class itty3.HttpResponse(body='', status_code=200, headers=None, content_type='text/plain')

	Bases: object

A response object, to make responding to requests easier.

A lightly-internal start_response attribute must be manually set on the
response object when in a WSGI environment in order to send the response.

	Parameters

	
	body (str, Optional) – The body of the response. Defaults to “”.

	status_code (int, Optional) – The HTTP status code (without the
reason). Default is 200.

	headers (dict, Optional) – The headers to supply with the response.
Default is empty headers.

	content_type (str, Optional) – The content-type of the response.
Default is text/plain.

	
delete_cookie(key, path='/', domain=None)

	Removes a cookie.

Succeed regards if the cookie is already set or not.

	Parameters

	
	key (str) – The name of the cookie.

	path (str, Optional) – The path the cookie is valid for.
Default is “/”.

	domain (str, Optional) – The domain the cookie is valid for.
Default is None (only the domain that set it).

	
set_cookie(key, value='', max_age=None, expires=None, path='/', domain=None, secure=False, httponly=False, samesite=None)

	Sets a cookie on the response.

Takes the same parameters as the http.cookies.Morsel object from
the Python stdlib.

	Parameters

	
	key (str) – The name of the cookie.

	value (Any) – The value of the cookie.

	max_age (int, Optional) – How many seconds the cookie lives for.
Default is None
(expires at the end of the browser session).

	expires (str or datetime, Optional) – A specific date/time (in
UTC) when the cookie should expire. Default is None
(expires at the end of the browser session).

	path (str, Optional) – The path the cookie is valid for.
Default is “/”.

	domain (str, Optional) – The domain the cookie is valid for.
Default is None (only the domain that set it).

	secure (bool, Optional) – If the cookie should only be served by
HTTPS. Default is False.

	httponly (bool, Optional) – If True, prevents the cookie from
being provided to Javascript requests. Default is False.

	samesite (str, Optional) – How the cookie should behave under
cross-site requests. Options are itty3.SAME_SITE_NONE,
itty3.SAME_SITE_LAX, and itty3.SAME_SITE_STRICT.
Default is None.
Only for Python 3.8+.

	
set_header(name, value)

	Sets a header on the response.

If the Content-Type header is provided, this also updates the
value of HttpResponse.content_type.

	Parameters

	
	name (str) – The name of the header.

	value (Any) – The value of the header.

	
write()

	Begins the transmission of the response.

The lightly-internal start_response attribute MUST be manually
set on the object BEFORE calling this method! This callable is
called during execution to set the status line & headers of the
response.

	Returns

	An iterable of the content

	Return type

	iterable

	Raises

	ResponseFailed – If no start_response was set before calling.

	
exception itty3.IttyException

	Bases: Exception

The base exception for all itty3 exceptions.

	
class itty3.QueryDict(data=None)

	Bases: object

Simulates a dict-like object for query parameters.

Because HTTP allows for query strings to provide the same name for a
parameter more than once, this object smoothes over the day-to-day usage
of those queries.

You can act like it’s a plain dict if you only need a single value.

If you need all the values, QueryDict.getlist & QueryDict.setlist
are available to expose the full list.

	
get(name, default=None)

	Tries to fetch a value for a given name.

If not found, this returns the provided default.

	Parameters

	
	name (str) – The name of the parameter you’d like to fetch

	default (bool, defaults to None) – The value to return if the
name isn’t found.

	Returns

	The found value for the name, or the default.

	Return type

	Any

	
getlist(name)

	Tries to fetch all values for a given name.

	Parameters

	name (str) – The name of the parameter you’d like to fetch

	Returns

	The found values for the name.

	Return type

	list

	Raises

	KeyError – If the name isn’t found

	
items()

	Returns all the parameter names & values.

	Returns

	
	A list of two-tuples. The parameter names & the first

	value for that name.

	Return type

	list

	
keys()

	Returns all the parameter names.

	Returns

	A list of all the parameter names

	Return type

	list

	
setlist(name, values)

	Sets all values for a given name.

	Parameters

	
	name (str) – The name of the parameter you’d like to fetch

	values (list) – The list of all values

	Returns

	None

	
exception itty3.ResponseFailed

	Bases: itty3.IttyException

Raised when a response could not be returned to the server/user.

	
class itty3.Route(method, path, func)

	Bases: object

Handles setting up a given route. Composed of a HTTP method, a URI path
& “view” (a callable function that takes a request & returns a
response object) for handling a matching request.

Variables can be added to the path using a <type:variable_name> syntax.
For instance, if you wanted to capture a UUID & an integer in a URI, you
could provide the following path:

"/app/<uuid:app_id>/version/<int:major_version>/"

These would be added onto the call to the view as additional arguments.
In the case of the previous path, the view’s signature should look
like:

def app_info(request, app_id, major_version): ...

Supported types include:

	str

	int

	float

	slug

	uuid

	Parameters

	
	method (str) – The HTTP method

	path (str) – The URI path to match against

	func (callable) – The view function to handle a matching request

	
can_handle(method, path)

	Determines if the route can handle a specific request.

	Parameters

	
	method (str) – The HTTP method coming from the request

	path (str) – The URI path coming from the request

	Returns

	True if this route can handle the request, False otherwise

	Return type

	bool

	
convert_types(matches)

	Takes raw matched from requested URI path & converts the data to
their proper type.

	Parameters

	matches (dict) – The variable names & the string data found
for them from the URI path.

	Returns

	The converted data

	Return type

	dict

	
create_re(path)

	Creates a compiled regular expression of a path.

It’d be unusual to need this as an end-user, but who am I to stop
you? :)

	Parameters

	path (str) – A URI path, potentially with <type:variable_name>
bits in it.

	Returns

	
	A tuple of the compiled regular expression that suits the

	path & dict of the variable names/type conversions to be done
upon matching.

	Return type

	tuple

	
extract_kwargs(path)

	Pulls variables out of the requested URI path.

	Parameters

	path (str) – The URI path coming from the request

	Returns

	
	A dictionary of the variable names from the path &

	converted data found for them. Empty dict if no variables
were present.

	Return type

	dict

	
get_re_for_any()

	

	
get_re_for_float()

	

	
get_re_for_int()

	

	
get_re_for_slug()

	

	
get_re_for_type(desired_type)

	Fetches the correct regex for a given type.

	Parameters

	desired_type (str) – The provided type to get a regex for

	Returns

	A raw string of the regex (minus the variable name)

	Return type

	str

	
get_re_for_uuid()

	

	
known_types = ['str', 'int', 'float', 'uuid', 'slug']

	

	
exception itty3.RouteNotFound

	Bases: itty3.IttyException

Raised when no method/path combination could be found.

	
itty3.get_version(full=False)

	Fetches the current version of itty3.

	Parameters

	full (bool) – Chooses between the short semver version and the
longer/full version, including release information.

	Returns

	The version string

	Return type

	str

Philosophy

The following are the guiding principles around itty3:

What itty3 Is

	Small (ideally, ~1kloc of code or less)

	Self-contained (depends only on the Python stdlib)

	Open (BSD license, baby!)

	
	Respects HTTP & the Web (all the HTTP verbs, good status codes,

	content-types, etc.)

	Easy to start working with (import itty3 & define some functions)

	Flexible & easy to extend (all code can be used in relative isolation)

	Few to no globals (outside of constants)

	Fast & efficient (within reason/readability)

	Well-tested

	Well-documented

	Unicode everywhere (that we can)

itty3 is designed for the sweet spot around creating single-page apps,
small APIs & experiments. The code you produce with itty3 should be
(relatively) easy to migrate to other things (Django, Flask, etc.) when
you’ve moved beyond itty3’s capabilities.

What itty3 Isn’t

	An everything-and-the-kitchen-sink webframework (there are better options)

	
	Strongly opinionated about tools

	(BYO-database-layer-template-engine-Javascript-framework-etc)

	A perfect solution

itty3 won’t ever ship with an authentication layer, database engines,
scaffolding, Makefiles (beyond the Sphinx one), etc.

It’s designed for the modern Web, so I’m sure there’s ancient things that
don’t work. Sorrynotsorry.

The Future

There are planned improvements for the future. The Github Issues [https://github.com/toastdriven/itty3/issues] for
the project is the most up-to-date source of that information, but generally
speaking:

	Cookie support

	Included example code

	More/better docs

	Maybe file uploads? Maybe

Contributing

itty3 gladly accepts contributions that:

	are respectful to everyone

	inclusive by default (we’re all human)

	report/fix Real World™ problems

If this list offends you or you feel you can’t follow these guidelines,
you’re welcome to use other frameworks or to not contribute.

Ways To Contribute

In easy-to-harder order:

	File an issue/bug report

	Add/update documentation

	Add test coverage

	Add feature code

File An Issue/Bug Report

If you encounter a bug or a shortcoming in itty3, one of the easiest
ways to help is to create a GitHub Issue [https://github.com/toastdriven/itty3/issues/new].

Simply click the link and fill out the template.

The more detail you can provide, the easier it will be to reproduce your
issue & get it resolved.

Thanks for the help!

Add/Update Documentation

Documentation is crucial in understanding & using software libraries.
And itty3’s documentation is no exception.

That said, mistakes & omissions happen. Helping fix the documentation is
an easy way to help everyone!

To submit a documentation addition/update:

	Fork the repository on GitHub

	Clone your fork to your local machine (or edit in the GitHub UI)

	Create a new branch with git

	Change the documentation in question (located in the docs/ folder)

	Add your changes via git

	Commit the changes to your branch

	Push the branch back to GitHub

	Open a Pull Request [https://github.com/toastdriven/itty3/compare] for your branch

	Fill out the template & submit!

With apologies to Edgar Allen Poe,…
Quoth the raven: Documentation forevermore!

Add Test Coverage

All software has bugs. Tests prove that the code works as intended.

To submit a test addition/update:

	Fork the repository on GitHub

	Clone your fork to your local machine (or edit in the GitHub UI)

	Create a new branch with git

	Create a virtualenv/pipenv for the repository & activate it

	Run $ pip install pytest

	Run $ pytest tests & ensure they’re passing.

	Make your changes/additions to test files.

	Run $ pytest tests again & ensure your changes pass.

	Add your changes via git

	Commit the changes to your branch

	Push the branch back to GitHub

	Open a Pull Request [https://github.com/toastdriven/itty3/compare] for your branch

	Fill out the template & submit!

I :heart: more tests, always.

Add Feature Code

Most everyone loves new features. As long as new features fall within
the Philosophy of itty3, they’re welcomed & appreciated!

To submit a new feature:

	Fork the repository on GitHub

	Clone your fork to your local machine (or edit in the GitHub UI)

	Create a new branch with git

	Create a virtualenv/pipenv for the repository & activate it

	Run $ pip install pytest

	Run $ pytest tests & ensure they’re passing.

	Add your feature work.

	Ensure the new feature has a docstring if it’s public API.

	Ensure the new feature matches existing code style (black is nice here).

	Add documentation to the main guides as appropriate.

	Run $ pytest tests again & ensure your changes pass.

	Add your changes via git

	Commit the changes to your branch

	Push the branch back to GitHub

	Open a Pull Request [https://github.com/toastdriven/itty3/compare] for your branch

	Fill out the template & submit!

You da bes!

 Python Module Index

 i

 		 	

 		
 i	

 	
 	
 itty3	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | P
 | Q
 | R
 | S
 | W

A

 	
 	add_route() (itty3.App method)

 	
 	App (class in itty3)

C

 	
 	can_handle() (itty3.Route method)

 	content_type() (itty3.HttpRequest method)

 	
 	convert_types() (itty3.Route method)

 	create_re() (itty3.Route method)

 	create_request() (itty3.App method)

D

 	
 	delete() (itty3.App method)

 	
 	delete_cookie() (itty3.HttpResponse method)

E

 	
 	error_404() (itty3.App method)

 	
 	error_500() (itty3.App method)

 	extract_kwargs() (itty3.Route method)

F

 	
 	find_route() (itty3.App method)

 	
 	from_wsgi() (itty3.HttpRequest class method)

G

 	
 	GET (itty3.HttpRequest attribute)

 	get() (itty3.App method)

 	(itty3.QueryDict method)

 	get_log() (itty3.App method)

 	get_re_for_any() (itty3.Route method)

 	get_re_for_float() (itty3.Route method)

 	
 	get_re_for_int() (itty3.Route method)

 	get_re_for_slug() (itty3.Route method)

 	get_re_for_type() (itty3.Route method)

 	get_re_for_uuid() (itty3.Route method)

 	get_status_line() (itty3.HttpRequest method)

 	get_version() (in module itty3)

 	getlist() (itty3.QueryDict method)

H

 	
 	HttpRequest (class in itty3)

 	
 	HttpResponse (class in itty3)

I

 	
 	is_ajax() (itty3.HttpRequest method)

 	is_secure() (itty3.HttpRequest method)

 	
 	items() (itty3.QueryDict method)

 	itty3 (module)

 	IttyException

J

 	
 	json() (itty3.HttpRequest method)

K

 	
 	keys() (itty3.QueryDict method)

 	
 	known_types (itty3.Route attribute)

P

 	
 	patch() (itty3.App method)

 	POST (itty3.HttpRequest attribute)

 	post() (itty3.App method)

 	
 	process_request() (itty3.App method)

 	PUT (itty3.HttpRequest attribute)

 	put() (itty3.App method)

Q

 	
 	QueryDict (class in itty3)

R

 	
 	redirect() (itty3.App method)

 	remove_route() (itty3.App method)

 	render() (itty3.App method)

 	render_json() (itty3.App method)

 	render_static() (itty3.App method)

 	
 	reset_logging() (itty3.App method)

 	ResponseFailed

 	Route (class in itty3)

 	RouteNotFound

 	run() (itty3.App method)

S

 	
 	set_cookie() (itty3.HttpResponse method)

 	set_header() (itty3.HttpResponse method)

 	
 	setlist() (itty3.QueryDict method)

 	split_uri() (itty3.HttpRequest method)

W

 	
 	write() (itty3.HttpResponse method)

Cookies

The nature of HTTP is state-less requests. However, this can make
user-specific behaviors difficult (without endlessly prompting the user).

A solution to this problem are HTTP Cookies [https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies]. Cookies provide a way to share
information between requests.

itty3 includes support for both sending & receiving cookies. We’ll be
working with the following baseline code:

import itty3

app = itty3.App()

@app.get("/")
def greet_user(req):
 return app.render(req, "Hello, user!")

@app.get("/set/")
def set_username(req):
 username = req.GET.get("username", "unknown")
 return app.redirect("/")

if __name__ == "__main__":
 app.run()

Setting Cookies

Right now, that set_username function doesn’t do a whole lot. Sure, the
user can provide their username via /set/?username=daniel, but it only
lives for the life of that request/response cycle.

Once they’re redirected back to /, the username is gone. But we
can store this value in a cookie to make it persist…

Since cookies are a (relatively) more advanced concept, we’ll be bypassing
the typical App.render & App.redirect shortcuts in favor of working
with itty3.HttpResponse directly. Let’s change up the set_username
code:

@app.get("/set/")
def set_username(req):
 username = req.GET.get("username", "unknown")

 # First, we manually create the redirect response.
 resp = itty3.HttpResponse(
 body="",
 headers={"Location": "/"},
 status_code=302,
)

 # Now, set the `username` in the cookies!
 resp.set_cookie("username", username)

 # Don't forget to return that `resp` at the end!
 return resp

Now when the user hits the /set/ URL & provides a username, that
information is persisted (by their browser) & sent with all following
requests.

On their next request (in this case, to /), their browser will provide
the Cookie: header with their username filled in.

Note

This code is for demonstration & display purposes. Cookies are
editable by the user, so never trust the input & blindly look up
records using the cookies’ data.

This is a form of session stealing attack, made even easier by being
plain text of a non-changing value!

Using the concept of a session (or signed cookies), as well as
verification checks, are the best way to prevent such attacks. This
cookie support enables such things, but are beyond the scope of
this guide.

Lastly, you can make as many calls to HttpResponse.set_cookie as you
like. So if multiple cookies need to be set/updated, call it multiple times,
once per cookie.

Reading Cookies

Unfortunately, while we’ve stored the user’s data, we’re not doing anything
with it. Let’s fix that & give the user a proper greeting:

@app.get("/")
def greet_user(req):
 # Set up a default.
 username = "unknown"

 # `req.COOKIES` is a `dict` with all the key/value pairs of
 # cookie data.
 if "username" in req.COOKIES:
 username = req.COOKIES["username"]

 body = "Hello, {}!".format(username)
 return app.render(req, body)

Now, when the user hits the / URL, they should be greeted by their
username!

Cookie Expiration

This is all well & good, until the user closes their browser. When that
happens, then they open the browser again & go back to /, they’re
greeted with Hello, unknown! again!

What happened?!!

The problem is that our use of HttpResponse.set_cookie doesn’t specify
an expiration. Because nothing is set, the browser automatically deletes the
cookies upon closing.

We can fix this easily enough, with one of two options: max_age or
expires. max_age lets you specify the number of seconds until the
cookie expires, while expires lets you set a specific date/time for
the expiration.

To use max_age:

@app.get("/set/")
def set_username(req):
 username = req.GET.get("username", "unknown")
 resp = itty3.HttpResponse(
 body="",
 headers={"Location": "/"},
 status_code=302,
)

 # Here's the change! Let's expire the cookie in 2 weeks time:
 # (60 sec/min * 60 min/hr * 24 hr/day * 7 days/week * 2 weeks)
 two_weeks = 60 * 60 * 24 * 7 * 2
 resp.set_cookie("username", username, max_age=two_weeks)

 return resp

To use expires:

Add the import at the top!
import datetime

...then...

@app.get("/set/")
def set_username(req):
 username = req.GET.get("username", "unknown")
 resp = itty3.HttpResponse(
 body="",
 headers={"Location": "/"},
 status_code=302,
)

 # Here's the change! Let's expire the cookie in 2 weeks time:
 two_weeks = datetime.date.today() + datetime.timedelta(weeks=2)
 resp.set_cookie("username", username, expires=two_weeks)

 return resp

Either way, no matter what the user does, that cookie will last for two
weeks.

But what if we want to make it go away sooner?

Deleting Cookies

Let’s simulate a “logout” & make sure the user’s username cookie goes
away now, rather than in two weeks time…:

Add a new function.
@app.get("/logout/")
def logout(req):
 resp = itty3.HttpResponse(
 body="",
 headers={"Location": "/"},
 status_code=302,
)

 # All we need to provide is the key.
 resp.delete_cookie("username")

 return resp

After visiting /logout/ & returning to /, the user is back to being
unknown.

Other Options

There are other, more advanced behaviors also possible via set_cookie:

	path: The path the cookie is valid for. Default is "/".

	domain: The domain the cookie is valid for. Default is only the domain
that set it.

	secure: If the cookie should only be served by HTTPS. Default is
False.

	httponly: If True, prevents the cookie from being provided to
Javascript requests. Default is False.

	samesite: How the cookie should behave under cross-site requests.
Options are itty3.SAME_SITE_NONE, itty3.SAME_SITE_LAX, and
itty3.SAME_SITE_STRICT. Default is itty3.SAME_SITE_NONE.
This is only available for Python 3.8+.

Welcome to itty3’s documentation!

Contents:

	Tutorial
	Installation

	Starting An App

	Adding Your First View

	Building A TODO List App

	Congratulations!

	Extending itty3
	Custom HttpResponse

	Custom HttpRequest

	Different Routing

	Serving Static Assets
	Setup

	Cookies
	Setting Cookies

	Reading Cookies

	Cookie Expiration

	Deleting Cookies

	Other Options

	Deploying itty3
	Deployment Checklist

	Managing App.debug

	Use A Proper WSGI Server

	Troubleshooting
	“My server isn’t responding to traffic!”

	“I’m getting a 500 error and don’t know what’s wrong!”

	“The traceback of my error isn’t enough!”

API Docs:

	API Documentation

Other Docs:

	Philosophy
	What itty3 Is

	What itty3 Isn’t

	The Future

	Contributing
	Ways To Contribute

	File An Issue/Bug Report

	Add/Update Documentation

	Add Test Coverage

	Add Feature Code

Indices and tables

	Index

	Module Index

	Search Page

Serving Static Assets

Web pages & web apps are usually made up of more than just HTML or JSON.
itty3 ships with built-in support for serving up static assets, such as:
CSS, images, Javascript, etc.

Note

Serving media in this way is really only suitable for
development. The drawbacks outside of development are numerous:

	It hasn’t been vetted for security

	It’s slower than something like nginx/S3/etc.

	It’ll tie up your server process(es)

Please don’t do this in production & take the time to setup your media
the Right Way™.

Setup

Setting up your app to serve static assets is easy. First, create a directory
for the assets alongside your application code.:

$ ls
app.py
$ mkdir static_media

The name of the directory isn’t very important, so feel free to use what
works for you.

Next, create some assets:

We create a nested structure inside, but there are no requirements.
You can have a completely flat directory if you like, or go
full Java & have an extremely deeply nested set of directories.
$ mkdir -p static_media/css
$ mkdir -p static_media/js

$ touch static_media/css/default.css
$ touch static_media/js/index.js

Dump some simple contents into them.
$ echo "* { margin: 0; padding: 0}" >> static_media/css/default.css
$ echo "window.alert('Yo!');" >> static_media/js/index.js

Finally, go back to your app’s code. Change your app.run(...) to:

if __name__ == "__main__":
 app.run(
 # Any other args you might have here, then...
 static_url_path="/static/",
 static_root="static_media",
)

static_root is the file-system path to the directory we created
above. This tells the itty3.App` where to look for the assets.

The static_url_path, on the other hand, sets up a special route in the
app for serving static media. Anything that starts with that path
will be served by the render_static handler.

So in this case, the following URLs will now serve the assets we created:

	/static/css/default.css

	/static/js/index.js

Run your app & give it a try!

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 itty3 Contents

 		
 Tutorial

 		
 Installation

 		
 Starting An App

 		
 Adding Your First View

 		
 Building A TODO List App

 		
 The Index View

 		
 Creating New TODOs View

 		
 Aside: Auto-Reloading Server

 		
 Marking TODOs As Done

 		
 Congratulations!

 		
 Extending itty3

 		
 Custom HttpResponse

 		
 Custom HttpRequest

 		
 Different Routing

 		
 Deploying itty3

 		
 Deployment Checklist

 		
 Managing App.debug

 		
 Use A Proper WSGI Server

 		
 Troubleshooting

 		
 “My server isn’t responding to traffic!”

 		
 “I’m getting a 500 error and don’t know what’s wrong!”

 		
 “The traceback of my error isn’t enough!”

 		
 API Documentation

 		
 itty3

 		
 Philosophy

 		
 What itty3 Is

 		
 What itty3 Isn’t

 		
 The Future

 		
 Contributing

 		
 Ways To Contribute

 		
 File An Issue/Bug Report

 		
 Add/Update Documentation

 		
 Add Test Coverage

 		
 Add Feature Code

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

